Parametric Stereo for Multi-pose Face Recognition and 3D-Face Modeling

نویسندگان

  • Rik Fransens
  • Christoph Strecha
  • Luc Van Gool
چکیده

This paper presents a new method for face modeling and face recognition from a pair of calibrated stereo cameras. In a first step, the algorithm builds a stereo reconstruction of the face by adjusting the global transformation parameters and the shape parameters of a 3D morphable face model. The adjustment of the parameters is such that stereo correspondence between both images is established, i.e. such that the 3D-vertices of the model project on similarly colored pixels in both images. In a second step, the texture information is extracted from the image pair and represented in the texture space of the morphable face model. The resulting shape and texture coefficients form a person specific feature vector and face recognition is performed by comparing query vectors with stored vectors. To validate our algorithm, an extensive image database was built. It consists of stereo-pairs of 70 subjects. For recognition testing, the subjects were recorded under 6 different head directions, ranging from a frontal to a profile view. The face recognition results are very good, with 100% recognition on frontal views and 97% recognition on half-profile views.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

3D Face Recognition using Patch Geodesic Derivative Pattern

In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...

متن کامل

Random-Profiles-Based 3D Face Recognition System

In this paper, a noble nonintrusive three-dimensional (3D) face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D) face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3...

متن کامل

Recognition of Multi-Pose Face In Colour Images Using Gabor Filters Based On SVM Concept

Human face recognition plays an important role in applications such as video surveillance, human computer interface, and face image database management. This paper presents an improved face recognition method for multi-pose face recognition in color images, which addresses the problems of illumination and poses variation. At first, color multi-pose faces image features were extracted based on G...

متن کامل

This Dissertation entitled MODELING THE HUMAN FACE THROUGH MULTIPLE VIEW THREE-DIMENSIONAL STEREOPSIS: A SURVEY AND COMPARATIVE ANALYSIS OF FACIAL RECOGNITION OVER MULTIPLE MODALITIES

by Xin Chen The growing need for effective biometric identification is widely acknowledged. Identifying an individual from his or her face is one of the most non-intrusive modalities in biometrics. Major challenges to face recognition system robustness include illumination and pose variations. This work introduces foundational research addressing two-dimensional intensity, infrared, three-dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005